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A B S T R A C T

Predicting capacity decay in lithium-ion batteries is challenging, especially with nonlinear degradation patterns. 
This study introduces a novel approach by investigating the capacity decay characteristics of lithium-ion bat
teries under prolonged micro-overcharging, revealing distinct peaks in the incremental capacity (IC) curve 
indicative of accelerated cathode material degradation. Furthermore, we propose the Micro-Overcharge Differ
ential Incremental Capacity (MO-DIC) method, a pioneering technique for predicting the capacity decay knee 
point. MO-DIC uses the rate of change of normalized peak height in the differential overcharging IC curve as a 
predictive indicator. Validated with low N/P ratio batteries, MO-DIC forecasts the life inflection point 25 to 36 
cycles ahead of capacity fade indicators and approximately 50 cycles before end-of-life. This innovative approach 
markedly improves battery health status prediction, offering substantial benefits for battery life cycle analysis 
and proactive maintenance strategy formulation. Future work will refine the MO-DIC method and evaluate its 
applicability across diverse battery types and operating conditions.

1. Introduction

Lithium-ion batteries have garnered widespread acclaim for their 
high energy density, superior power output, and extended service life, 
thereby becoming the preeminent energy storage solution in electric 
vehicles (EVs) and energy storage systems [1–3]. These attributes have 
propelled lithium-ion batteries to the forefront of energy storage tech
nologies, making them indispensable in modern applications where high 
performance and reliability are paramount. However, despite their 
many advantages, lithium-ion batteries are not immune to degradation. 
Over extended cycling, some abnormal lithium-ion batteries may 
experience a progressive decline in capacity, often manifesting as 
non-linear decay patterns [4]. This phenomenon, commonly referred to 
as capacity fade, is characterized by a precipitous drop in capacity over 
time [5–7]. The non-linear nature of this aging process poses significant 
challenges to the safety, longevity, and residual value of the batteries, as 
well as their suitability for cascaded utilization [8,9]. Moreover, 

non-linear aging can compromise the functionality of online battery 
management systems (BMSs), diminishing the precision of the state of 
charge (SOC) and state of health assessments [10,11]. Therefore, it is 
imperative to assess the non-linear decay characteristics of abnormal 
lithium-ion batteries to enhance predictive capabilities and manage
ment strategies.

The prediction of lithium-ion battery capacity has been significantly 
advanced by the advent of model-based and data-driven methodologies. 
Model-based approaches, which encompass empirical and physical 
models, simulate the aging behaviors of batteries based on intrinsic 
degradation mechanisms [12,13]. Li et al. employed an improved bat 
algorithm optimization kernel extreme learning machine to predict 
lithium-ion battery life, thereby enhancing the safety and stability of 
battery usage [14]. These methodologies rely on a thorough under
standing of the degradation processes and/or the utilization of purely 
mathematical strategies to define the degradation profiles of batteries, 
encompassing voltage and health life metrics. However, the health life of 
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a battery is invariably influenced by a variety of factors, especially for 
abnormal batteries with non-linear degradation. Given the intricate, 
non-linear characteristics inherent in degradation, data-driven methods, 
despite their proficiency in capturing statistical regularities, often fail to 
adequately characterize the non-linear and dynamic aspects of battery 
aging [15]. The integration of implicit degradation features, such as 
incremental capacity, can significantly improve the accuracy and effi
ciency of data-driven methods [16]. Incremental capacity analysis 
(ICA), utilizing the capacity-voltage curve, offers a quantitative analysis 
of lithium inventory loss (LLI) and active material loss (LAM). This 
approach extracts electrochemical signal features associated with these 
failure modes [17–19]. Studies have suggested that the characteristics of 
the incremental capacity (IC) curve, including the peak shape, height, 
and position, may be closely linked to the capacity decay and aging 
mechanisms of lithium-ion batteries [20–22]. For example, a reduction 
in the IC peak height post-cycling aging was found to be correlated with 
the loss of active material, and a decrease in lithium inventory could 
rapidly lower peak height [23]. Consequently, the peak height and po
sition derived from the IC curve may act as indirect characteristic pa
rameters to delineate the health status of the battery, and are critical in 
the prediction of knee point. However, the ICA method, which employs 
low current rates such as C/25 and C/6, remains challenged by the need 
to minimize the impact of ohmic resistance on peak voltage changes to 
capture subtle signals during the process [22]. This requirement 
significantly compromises the timeliness and precision of this method, 
highlighting an urgent need for rapid and cost-effective techniques that 
can handle the fast charging demand of batteries. Therefore, there is a 
pressing need to develop advanced methodologies that can accurately 
predict the non-linear degradation of lithium-ion batteries, particularly 
in the context of their complex aging behaviors and the practical con
straints of real-world applications.

Despite the advancements in predictive methodologies discussed 
earlier, understanding the root causes of nonlinear capacity degradation 
in lithium-ion batteries is essential for developing robust predictive and 
management strategies. One significant factor contributing to this 
degradation is micro-overcharging, which has garnered increasing 
attention due to its subtle yet impactful effects on battery health [24,
25]. Unlike overcharging [26], which results from complete BMS failure 
or human error and leads to severe and immediately noticeable conse
quences such as rapid voltage rise, electrolyte decomposition, gas gen
eration, and potential thermal runaway or explosion, 
micro-overcharging involves a slight increase in the charging cut-off 
voltage. This subtle overcharge causes gradual capacity loss over time, 
primarily through lithium plating on the anode and an increase in in
ternal resistance. The effects of micro-overcharging accumulate subtly 
over multiple charge-discharge cycles, making it difficult to detect and 
manage. It can stem from slight BMS miscalibration, high-temperature 
charging conditions, or manufacturing inconsistencies, such as minor 
deviations in the N/P ratio (the mole ratio of active materials in the 
negative to positive electrodes) [27]. The insidious nature of 
micro-overcharging makes it particularly challenging to address. While 
overcharging poses immediate safety risks and can be mitigated through 
robust safety measures and user education, micro-overcharging’s cu
mulative effects require more sophisticated detection and management 
strategies. Precise voltage and current monitoring, advanced diagnostic 
algorithms, and adaptive control strategies are essential for mitigating 
the long-term damage caused by micro-overcharging [28]. Given its 
potential to erode battery performance and safety over time, 
micro-overcharging underscores the critical need for early warning 
monitoring technologies to enhance battery safety and longevity.

In this study, we introduce a groundbreaking approach to under
standing and predicting nonlinear capacity degradation in lithium-ion 
batteries through the lens of micro-overcharging. Unlike conventional 
methods relying on standard IC curves, our research pioneers the Micro- 
Overcharge Differential Incremental Capacity (MO-DIC) analysis. This 
innovative technique integrates controlled micro-overcharging 

scenarios with advanced DIC methodology to uncover unique degrada
tion signatures. Our comprehensive experiments and data-driven anal
ysis elucidate the specific mechanisms of micro-overcharging-induced 
degradation and establish a robust predictive model. This model 
significantly enhances the reliability and safety of lithium-ion battery 
systems, offering a transformative tool for proactive battery health 
management and optimized lifecycle utilization. Specifically, this study 
aims to develop an early prediction technique for the nonlinear capacity 
degradation inflection point of lithium-ion batteries based on the MO- 
DIC method.

2. Methodology

The methodology we used to process the data and extract the 
degradation features are overviewed in Fig. 1. We based this workflow 
on our experimental results in order to optimize the extraction of 
degradation features, as will be further detailed in the later sections of 
this report.

2.1. Capacity fade features

To identify a battery degradation behavior, its SOH must first be 
calculated. The capacity retention rate is used to describe the SOH, ac
cording to the relationship: 

SOH=
Capacityfade

Capacityoriginal
Eq. 1 

The capacity retention curve typically exhibits a knee point, where 
the battery capacity changes from slowly declining to rapidly 
decreasing. The shape of this curve varies significantly based on each 
battery type and its particular electrochemical properties. As a result, 
mathematical methods are developed with a focus on locating the knee 
point. Based on research [23], the curvature at any point in a continuous 
function can be defined using its first and second derivatives, using the 
relationship: 

Kf (x)=
f ʹ́ (x)

(1 + fʹ(x)2
)

1.5 Eq. 2 

This formula matches the point of maximum curvature to ad hoc 
operators use to select a knee point, since curvature is a mathematical 
measure of how much a function differs from a straight line. Maximum 
curvature therefore captures the levelling-off effect that operators use to 
identify the knee point, which is then given by the point where the de
rivative is at its maximum value.

2.2. Differential capacity and voltage features

The capacity retention rate can be used to visualize battery degra
dation, but it cannot reflect the mechanism underlying this degrada
tion—and therefore cannot be used to make predictions. Therefore, 
another approach must be used to fully describe the features of a battery 
degradation. The differential capacity and voltage (IC) curves are 
commonly used to identify different battery degradation mechanisms, 
such as loss of active materials, based on numerical analysis. The IC 
curve is defined by the following equation. 

dQ
dV

=
Capacityi − Capacityi− 1

Voltagei − Voltagei− 1
Eq. 3 

which relies on the difference in value between two sampling points. For 
raw data that is sampled every second, this can introduce challenges as 
the noise for each measurement will be further amplified when calcu
lated the difference. Denser sampling also leads to a higher frame 
number, resulting in noisier curves. Such a curve cannot be used to 
identify the features. Thus, first is necessary to extend the sampling 
during and eliminate such oscillations. The cycling voltage data is re- 
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sampled first, followed by the sampling capacity data. After resampling, 
the Gaussian filter method is used to smooth the curve. The Gaussian 
filter is based on the Gaussian function, defined as followed, 

G(x)=
1

σ√2π
exp

(

−
(x − μ)2

2σ2

)

Eq. 4 

This function decreases the probability distribution of the function. 
When used for curve smoothing, the value of each sampled data point is 
recalculated based on the values of other nearby points. The Gaussian 
function states that the closer a given point is to the sampling point, the 
greater its influence on the sampling point value (and vice-versa). Thus, 
the value for each sampled point can be found by: 

ysampling point =
∑n+r

i=n− r
yi*G(x) Eq. 5 

where n is the location of the sampling point, and r is the number of 
nearby points within half of the target length. The recalculated value for 
each sampling point can then be obtained by conducting convolution. 
Following this, the IC value can be calculated using the central differ
ence method. The IC curve can then be used to analyze or highlight key 
features. To numerically analyze these features, such as the change of 
the curve’s peak, for example, for the derivative of the IC can be 
calculated, using: 

d
dV

(
dQ
dV

)

=
d2Q
dV2 Eq. 6 

3. Experimental

3.1. Battery Assembling

To investigate the nonlinear decay issues of the NCM622/graphite 
system battery, the pouch batteries (nominal capacity of 25 Ah@1 C) 
were examined. They contained a NCM622 cathode material (Ningbo 
Ronbay Lithium Battery Material Co., Ltd., China) and a graphite anode 
material (Shenzhen BTR New Energy Materials Co., Ltd., China). The 
cathode electrodes were made from NCM, and had compositions of 97.5 
wt% active material, and 2.5 wt% carbon black and carbon nanotubes, 
with the remainder comprising a polyvinylidene fluoride (PVDF) binder. 
The anode electrodes were 95.7 wt% graphite and 1.6 wt% carbon 
black, as well as 2.7 wt% styrene-butadiene rubber and a carboxymethyl 

batteryulose binder. The ratio of the active material’s capacity in the 
anode electrode to that in the cathode was 1.1:1. A polypropylene- 
coated ceramics separator (16 μm thickness; Shenzhen Star Source 
Material Polytron Technologies Co., Ltd., China) was used in between 
the two electrodes. The batteries were sealed in an all aminated polymer 
film box. After being vacuum dried at 110 ◦C for 12 h, they were directly 
transferred to a dry room (dew-point temperature: ≤ − 40 ◦C), where 
they were filled with 142 g of electrolyte (LBC435B10; Shenzhen Cap
chem Technology Co., Ltd., China).

To validate our approach, we concurrently fabricated lithium-ion 
batteries with an N/P ratio of 0.9, which are highly prone to lithium 
plating. These batteries exhibit a more pronounced non-linear capacity 
degradation knee point at the end of their cycling life. By adjusting the 
anode areal density during electrode sheet coating, we created batteries 
with varying tendencies for lithium plating. Specifically, we compared 
batteries with an N/P ratio of 1.1, referred to as Battery Test (BT), which 
were used for aging degradation detection in our initial method, to those 
with an N/P ratio of 0.9, referred to as Battery Validation (BV), which 
served as a control group to study the non-linear capacity degradation 
characteristics under micro-overcharging conditions.

3.2. Electrochemical testing

The BT batteries, subjected to the testing method, were designated as 
BT-4.3V and BT-4.4V based on their respective maximum charging 
voltages. Capacity testing of the BT batteries included constant current- 
constant voltage (CC-CV) charging and CC discharging. During CC-CV 
charging, the batteries were charged at a CC rate of 1C until they 
reached 4.3 V or 4.4 V. Subsequently, CV charging was employed until 
the battery current decayed to 0.05C. For the CC discharging process, a 
constant current rate of 1C (equivalent to 25 A) was used to discharge 
the batteries down to 2.8 V. The BV-4.4V battery was subjected to a 
specific testing protocol. Initially, the battery underwent 48 cycles of 
normal cycling tests, which included CC-CV charging at a 1C rate to a 
charge cutoff voltage of 4.2 V, and then holding at 4.2 V until the current 
decayed to 0.05C. This was followed by a 0.5-h rest and discharging at 
1C to 2.8 V. Subsequently, the charge cutoff voltage was adjusted to 4.4 
V, and the battery underwent 2 cycles of micro-overcharge cycling. After 
completing these 2 micro-overcharge cycles, the battery resumed 
normal cycling tests. This alternating pattern between high-rate and 
micro-overcharge cycling tests was maintained until the battery reached 
its end-of-life. The Open-Circuit Voltage (OCV) tests for the BT-4.2V, BT- 

Fig. 1. Flowchart of the MO-DIC analysis method.
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4.3V, and BT-4.4V batteries are conducted as follows: The batteries are 
charged or discharged at a 1C current rate. After each adjustment of 10 
% SOC, the batteries are allowed to rest for 3 h. The voltage value 
recorded after this rest period is taken as the OCV value for the corre
sponding SOC state. All electrochemical tests of the batteries were 
conducted at a temperature of 25 ◦C ± 2 ◦C and a relative humidity of 
10 %–90 % until a rapid capacity fade was observed, unless otherwise 
specified.

3.3. Post-mortem analysis

The discharged failed batteries were subsequently introduced into a 
glove box purged with nitrogen, a measure taken to shield the batteries 
from the deleterious effects of humidity. Within this controlled envi
ronment, the outer aluminum-plastic film was carefully excised using 
non-reactive ceramic scissors, in order to prevent any unwanted in
teractions with moisture or atmospheric oxygen. The cathode and anode 
electrode were then extracted and placed into a glass container con
taining dimethyl carbonate (DMC), where they were allowed to soak for 
30 min. A syringe filled with DMC was then used to perform secondary 
cleanings of both of the electrodes’ surfaces. After these were allowed to 
dry in the glove box for 1 h, a non-woven cloth moistened with N- 
methyl-2-pyrrolidone (NMP)was used to gently wipe one side of each 
electrode until the active material was completely removed on that side. 
The electrodes were punched into small round discs using a die-punch 
machine with a 14 mm hole diameter. The cathode discs were placed 
into a vacuum glove box at 80 ◦C for 6 h to bake, while the anode discs 
were baked in a vacuum glove box at 65 ◦C for 6 h. The anodes and 
cathodes were then reassembled into button batteries. The resultant 
NCM/Li half-batteries were tested using CC-CV charging up to 4.4 V, and 
CC discharging down to 2.8 V, both at 0.05 C. The same process was used 
for the graphite/Li half-batteries, with charging cut-off at 2.0V and 

discharging to 0.05 V, also at 0.05 C.
Inductively-Coupled Plasma (ICP) spectroscopy was used to quantify 

the surface concentrations of Ni, Co, and Mn. This technique was 
selected to detect potential dissolution of cathode materials and their 
subsequent deposition on the anode, which could indicate material 
degradation. Additionally, Gas chromatography-mass spectrometry 
(GC-MS) was used to analyze the internal gases extracted from the failed 
batteries. The aim was to identify and quantify the gases produced 
within the battery, which could be indicative of certain chemical re
actions or degradation processes.

4. Results and discussion

4.1. Cycling performance of the test batteries

The comparative analysis of lithium-ion batteries with N/P ratios of 
1.1 and 0.9 within this study was conducted to discern the impact of 
these ratios on battery performance, particularly focusing on the 
degradation characteristics. The voltage-capacity profiles illustrated in 
Fig. 2(a) highlight that the battery with an N/P ratio of 1.1 (black curve) 
maintains a more stable voltage platform and higher discharge capacity 
throughout its cycling life. This stability is indicative of a balanced 
lithium-ion intercalation and deintercalation process, which is essential 
for sustained battery performance. Conversely, the battery with an N/P 
ratio of 0.9 (red curve) displays a more rapid voltage decline during 
discharge, resulting in a lower discharge capacity. This observation 
suggests that a lower N/P ratio may lead to a quicker attainment of the 
cutoff voltage during discharge, thereby diminishing the battery’s en
ergy output. Fig. 2(b) provides a comparative view of the capacity 
retention and cycling efficiency for both battery types over their entire 
lifecycle. Notably, the battery with an N/P ratio of 0.9 exhibits more 
frequent fluctuations in discharge efficiency. These fluctuations are 

Fig. 2. Charge/discharge profiles of the tested pouch battery: (a) voltage-capacity curve (b) cyclic capacity and efficiency; (c) OCV curves of BT-4.2V, BT-4.3V, and 
BT-4.4V batteries at different SOC levels during the charging process; (d) OCV curves of BT-4.2V, BT-4.3V, and BT-4.4V batteries at different SOC levels during the 
discharging process.
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likely attributable to an increased propensity for lithium plating, which 
is particularly pronounced in batteries with lower N/P ratios. The sig
nificant nonlinear capacity degradation observed in these batteries is 
associated with insufficient active anode material, leading to localized 
lithium deposition during cycling. This localized lithium deposition not 
only elevates the internal resistance of the battery but also contributes to 
the gradual structural disintegration within the battery. As the cycle 
count increases, this structural breakdown results in a rapid capacity 
decline, signaling the battery’s transition into its end-of-life phase.

To compare the charging characteristics of BT-4.2V, BT-4.3V, and 
BT-4.4V batteries, we determined their 1C discharge capacities to be 
24.6 Ah, 25.5 Ah, and 26.7 Ah, respectively. Additionally, we measured 
the OCV variation patterns during both charging and discharging pro
cesses at various SOC levels, which allowed us to discern the distinct 
electrochemical behaviors associated with each battery type under 
different charging conditions. Fig. 2(c) and (d) illustrate OCV curves for 
BT-4.2V, BT-4.3V, and BT-4.4 V batteries, during the charging and dis
charging processes, respectively. Notably, the OCV curves converge 
when the SOC is below 50 %, suggesting similar electrochemical re
sponses in this range. In contrast, above 50 % SOC, the curves diverge 
markedly, indicating varying electrochemical processes and degradation 
mechanisms at higher SOC levels. At SOC levels above 50 %, the 
increased voltage can lead to several detrimental effects. These higher 
voltages can cause excessive side reactions, such as the oxidation of 
electrolytes and the subsequent thickening of the solid electrolyte 
interphase (SEI) layer. This thickening can trap more lithium ions, 
leading to a loss of active lithium inventory and a decrease in the bat
tery’s overall capacity. Additionally, the higher voltage can accelerate 
the dissolution of transition metals from the cathode, which can then 
deposit on the anode, further contributing to capacity loss and potential 
short-circuiting. Therefore, it is evident that the micro-overcharging of 
4.3V and 4.4V batteries significantly amplifies the characteristics of 
battery capacity change, offering a clearer perspective on the nonlinear 
degradation process. This amplification is pivotal for investigating and 
anticipating capacity fade, as it brings to light a more distinct indication 
of the degradation mechanisms, especially in the context of nonlinear 
capacity degradation in batteries.

4.2. Non-linear degradation characteristics analysis of micro-overcharged 
batteries

Based on previous research, the capacity loss of the cathode is pri
marily attributed to structural degradation, as evidenced by the deteri
oration of the crystal structure over cycles, which leads to a decrease in 
specific capacity [29]. The formation of secondary phases and the 
dissolution of active material also contribute to this loss. For the anode, 
capacity loss is mainly due to the formation and growth of the solid 
electrolyte interphase layer [30]. The loss of active lithium, observed 
throughout the battery’s life, is primarily caused by irreversible 

reactions between lithium ions and the electrolyte, resulting in the 
formation of SEI and other by-products [31]. Fig. 3(a) shows the IC 
curves of the battery after varying cycle numbers, each refer to cycles at 
1 C. Between cycles 20–140, the battery IC curve had three distinct 
peaks, labeled1*, 2*, and 3* (Fig. 3(a)). According to the results of 
previous relevant studies [32], peak 1*is related to the anode, while 
peaks 2* and 3* are associated with the cathode NCM. The curve in
dicates that, prior to 160 cycles, peak 1* remained unchanged, the 
height of peak 2* decreased, and the position of peak 3 moved towards a 
higher potential-suggesting that the degradation of the battery during 
this stage was mainly related to the loss of the cathode. However, after 
160 cycles, both the positions of peaks 1* and 2* shifted toward higher 
potentials, and the intensities of both peaks decreased, with peak 3* 
disappearing. This indicated that, at this point, loss of both the anode 
and cathode materials, as well as the lithium inventory, had occurred, By 
the time the battery reached 180 cycles, it had failed completely, with no 
peaks present in its IC curve. Fig. 3(b) shows its DV curves where, after 
160 cycles, the positions of peaks l# and 2# had moved toward lower 
capacity values. Fig. 3(b) presents the DV curves, where Ql, Q2, and Q3 
correspond to the capacity values associated with anode material ca
pacity loss, active lithium capacity loss, and cathode material capacity 
loss, respectively. After 160 cycles, both the anode and cathode mate
rials suffered significant losses, and the amount of lost active lithium had 
exceeded the loss of both the anode and cathode materials (Fig. 3(c)). 
This discrepancy is primarily due to the fact that the layered NCM 
cathode undergoes accelerated transition-metal dissolution during the 
initial 140 cycles under high-voltage cycling. The dissolved 
Ni2+/Co2+/Mn2+ ions migrate to the anode and plate on the graphite 
surface, which initially dominates the capacity fade due to cathode mass 
loss. In the early cycles, the contributions of anode and lithium loss are 
below the resolution of the test equipment and are statistically set to 
zero. In later cycles, the situation changes. The plated metals catalyze 
continuous electrolyte reduction, which thickens the SEI layer and traps 
additional Li+. Concurrently, the intercalation of metals into the 
graphite lattice distorts its structure, increasing impedance and accel
erating graphite pulverization. Thus, while the dissolution of the cath
ode is the primary trigger for degradation, the metals released 
subsequently drive both the depletion of lithium inventory and the 
structural failure of the anode. As a result, all three loss mechanisms 
become operative in the later cycles.

Post-failure testing of the battery revealed the specific capacities of 
the cathode and anode materials, with results shown in Table 1. The 
specific capacity values for both the electrode materials stabilized after 
cycle 6. Analysis of the data indicates that at a cut-off voltage of 4.4 V, 
the specific capacity of the cathode material decreased by 18.20 mAh/g 
±3 mAh/g, while that of the anode material decreased by 50.59 mAh/g 
± 2 mAh/g. Consequently, the specific capacity loss rates for the cathode 
and anode materials were 9.45 % ± 1.55 % and 15.3 % ± 0.6 %, 
respectively.

Fig. 3. Incremental capacity curve analysis of battery capacity fade sources: (a) IC curves, (b) DV curves, and (c) sources of capacity loss at different cycles.
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After failure, a significant quantity of gas was produced, causing the 
battery to bulge, as shown in Fig. 4(a). Following failure, the anode 
electrode sheet displayed both yellow and black areas. The yellow re
gions were likely associated with lithium salts or lithium-carbon com
pounds, as shown in Fig. 4(b). By contrast, the cathode surface appeared 
more uniformly colored, as shown in Fig. 4(c). GC-MS analysis of the gas 
produced in the battery indicated a composition of hydrogen, oxygen, 
nitrogen, and hydrocarbon gases, with percentages of 78 %, 2 %, and 6 
%, respectively (Fig. 4(d)). The presence of oxygen and nitrogen was 
possibly due to air infiltration into the gas collector. Because hydrogen 
was the primary gas produced by reactions in the lithium-ion batteries, 
this failure mechanism was possibly related to hydrogen generation.

Analysis of the anode material from the failed battery revealed the 
significant presence of Ni, Co, and Mn, as shown in Fig. 4(e). By contrast, 
these elements were not detected in the anode material of the normal 
operating battery. Throughout the cycling process with mild overcharge, 
the battery’s cathode material experienced excessive metal dissolution, 
leading to deposition on the anode. Previous research found that Ni ions 
from this dissolution deposited on the negative electrode, forming 
metallic nickel, which contributed to the catalytic production of 
hydrogen gas [33]. Concurrently, metal dissolution at the cathode could 
also result in degradation of the solid electrolyte interphase film on the 
anode’s surface, accelerating active lithium loss. This degradation ulti
mately resulted in the complete loss of active lithium, as well as the 
active materials of the anode and cathode. Consequently, we inferred 
that the battery’s failure process commenced with high voltage condi
tions that induced excessive metal dissolution in its cathode material. 
The dissolved metal ions likely migrated to the anode, where they 
deposited and subsequently destabilized the SEI on the anode’s surface. 
The ongoing formation and degradation of the SEI membrane then 
contributed to the depletion of active lithium. Deposited nickel also 
likely facilitated hydrogen gas generation through the catalysis of pro
tonated byproducts. These factors were likely responsible for the 

capacity changes during the cycling process, which exhibited nonlinear 
degradation characteristics.

4.3. MO-DIC curve analysis of the micro-overcharged batteries

The identification of knee points in the capacity fade curve is 
considered instrumental in analyzing the onset of rapid capacity decline 
in batteries. However, discerning other indicative features before this 
juncture can be challenging. Prior to the knee point, health life value 
experiences a gradual decline, which may be difficult to identify. 
Therefore, non-destructive prediction of the knee point relies on iden
tifying these subtle capacity fade characteristics.

To determine the anticipatory benefits of MO-DIC values in fore
casting battery capacity knee point, a comparative analysis was per
formed on the MO-IC and MO-DIC curves as a function of voltage across 
diverse cycles for the BT-4.4 V and BT-4.3 V batteries. As shown in Fig. 5
(a), prior to the knee point (cycle 161), the initial peak in the IC diagram 
of the BT-4.4 V battery on the left demonstrated a decrease in peak value 
and a right shift in position. This suggested that the aging characteristics 
evolved in tandem with the cycle count, mirroring the trends observed 
in the capacity fade curve. Based on this peak’s value and position, it was 
possible to extract an MO-IC feature before the knee point, which could 
be used to predict the knee point using a measurement-based approach 
rather than the model-based approach. This measurement-based 
approach would be much easier to deploy in an EV, for example, 
because it does not rely on the complex computations needed in a bat
tery aging model. However, a single MO-IC curve is not suitable for 
making accurate predictions, because the shapes of the peaks (i.e., first 
peak in Fig. 5(a)) will change as a battery ages, resulting in decreases in 
their maximum values. Therefore, it was beneficial to continue pro
cessing this curve to better highlight this signal. Fig. 5(b) presents the 
MO-DIC curve of the BT-4.4 V battery, showing 2 peaks and 2 valleys, 
with peak and valley intensities about 10 times higher than those in the 
MO-IC curve of Fig. 5(a). In Fig. 5(b), the intensity of peaks and valleys 
declines with battery aging, while the corresponding voltage increases. 
This indicates that the MO-DIC curve is more sensitive to the aging 
process and is better suited for calculating battery life cycle knee point.

Fig. 5(c) and (d) presents the MO-IC and MO-DIC curves for the BT- 
4.3 V battery, providing an in-depth analysis of the battery’s electro
chemical behavior throughout the cycling process. The MO-IC curve for 
the BT-4.3 V battery, as shown in Fig. 5(c), exhibited a less pronounced 
initial peak and more significant rightward shift compared to the BT-4.4 
V battery shown in Fig. 5(a). Similarly, the MO-DIC curve for the BT-4.3 
V battery in Fig. 5(d) demonstrated peak heights that were consistent 
with those of the BT-4 V battery, though with a more pronounced 

Table 1 
Capacity loss test results of cathode and anode materials in the failed batteries.

Electrode Discharge 
capacity [mAh/g]

Total capacity loss 
[mAh/g]

Specific capacity loss 
ratio [%]

Initial Failed

Cathode 192.58 175.63 18.20 ± 3 9.45 ± 1.55
192.56 171.44
192.78 176.24

Anode 330.35 280.17 50.59 ± 2 15.3 ± 0.6
330.52 281.48
330.24 277.7

Fig. 4. Post-mortem analysis of the failed battery: (a) bulging battery after failure, (b) and (c) the positive and negative electrodes, respectively, d) gas composition, 
and (e) transition metal content in the anode post-failure.
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Fig. 5. MO-IC and MO-DIC curves of the BT-4.4 V and BT-4.3 V batteries: (a) BT-4.4 V IC curve, (b) BT-4.4 V DIC curve, (c) BT-4.3 V IC curve, and (d) BT-4.3 V 
DIC curve.

Fig. 6. MO-DIC analysis of the BT-4.3 V and BT-4.4 V batteries: (a) variation in the normalized capacity retention rate (NCRR) with number of cycles, (b) variation in 
the normalized peak height (NH) value of the MO-DIC method with number of cycles, (c) variation in the normalized peak height change rate (NHR) with number of 
cycles. (d) Comparative analysis of capacity fade and NHR value variations throughout cycling. Validation of the MO-DIC variation of BV-4.4V
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rightward shift. The distinct peaks in the MO-DIC curve, especially for 
the BT-4.4 V battery, offered more reliable features for detailed analysis 
and predictive modeling of battery health and longevity.

To determine the utility of the peak height in the DIC curve for 
predicting the battery’s knee point, a correlation was established be
tween the peak height of the MO-DIC curve and cycle count. To ensure 
the strategy’s repeatability and applicability to other batteries, the 
second peak height of the MO-DIC curve was selected and normalized 
using Equation (1), denoted the normalized peak height (NH value): 

NH i =
Hi

H1
, Eq. 7 

where NH i represents the normalized peak height of the MO-DIC curve 
at the ith cycle, and Hi and H1 denote the peak heights at the ith and 1st 
cycles, respectively. To compare the capacity retention rate with the 
MO-DIC peak heights, the capacity retention rate was also normalized, 
as follows, and denoted the normalized capacity retention rate (NCRR): 

NCRRi =
CRRi

CRR1
, Eq. 8 

where NCRRi is the normalized value for the capacity retention rate at 
the ith cycle, and CRRi and CRR1 represent the capacity retention rates 
at the ith and 1st cycles, respectively.

Post normalization, the MO-DIC peak heights for both the BT-4.3 V 
and BT-4.4 V batteries exhibited similar trends, as shown in Fig. 6(b), 
and a clear pattern of advanced decrease compared to the capacity 
retention rate curves, as shown in Fig. 6(a). This characteristic could be 
employed to predict the knee point, identified at cycle 158 for the BT- 
4.4 V battery and cycle 293 for the BT-4.3 V battery. To demonstrate the 
predictive capability of this strategy, a threshold of 0.9 was selected as a 
feature value for the peak height. The cycle number at this value was 
recorded, which was cycle 275 for the BT-4.3 V battery and 138 for the 
BT-4.4 V battery. This indicated that the DIC peak height feature value 
appeared after 36 cycles for the BT-4.3 V battery and 20 cycles for the 
BT-4.4 V battery before their knee points, as shown in Table 2. Mani
festation of the MO-DIC peak height feature occurred 20–36 cycles prior 
to the battery’s capacity knee point, indicating that the MO-DIC method 
could predict the lifespan with an advance of approximately 13 % of the 
cycle life. This early detection of the MO-DIC knee point suggested that 
MO-DIC was more sensitive to the initial stages of degradation due to 
aging processes such as LAM depletion, which was accentuated by the 
micro-overcharging strategy. To achieve real-time lifespan prediction 
for batteries, especially those exhibiting nonlinear capacity changes, we 
extracted and analyzed the peak height change rate (NHR value) in the 
MO-DIC method on a cycle basis, and found that the NHR value not only 
mirrored the trend of the NH value but also exhibited a more mono
tonically smooth variation with increasing cycle numbers, making it a 
suitable characteristic parameter for assessing the changes in battery life 
cycle, as shown in Fig. 6(c). The calculation formula is given by Equation 
(9). 

NHRi =
NHi

NHi+1
× 1000. Eq. 9 

Consequently, we established a benchmark NHR value as an indi
cator of the battery’s non-linear decay inflection point. By conducting a 
comprehensive analysis of Fig. 6(a)–6(c), we could define the lifecycle 

states of the batteries experiencing nonlinear capacity degradation 
based on the NHR value across different ranges. When the NHR value 
exceeded − 1, the battery was considered to be in a normal operational 
state. However, when the NHR value fell between − 1 and − 3, the bat
tery approached its end of life. When the NHR value was less than − 3, 
the battery capacity diminished rapidly, indicating that it had reached 
its end of life.

To thoroughly validate the applicability of our method and to 
confirm its accuracy in predicting battery life, we subjected BV-4.4V 
batteries to routine cycling until failure. During this process, MO-DIC 
tests were conducted twice following every 48 regular cycles to calcu
late the NHR value. Fig. 6(d) presents the curves of capacity degradation 
and NHR value changes observed in this test. It is evident that the bat
tery maintained a relatively stable operational status for the first 330 
cycles. Subsequently, the NHR value began to decline significantly, 
indicating that the battery had entered the designated warning zone. 
This zone lasted for approximately 50 cycles before the battery rapidly 
transitioned into its end-of-life stage. Continuing to use the battery at 
this point could result in a sudden and drastic drop in capacity, poten
tially leading to battery failure. These observations suggest that the 
predictive cycles can be advanced by approximately 50 cycles compared 
to the capacity degradation trend, with the end-of-life of the batteries 
determined by the NHR value falling below − 3 and the capacity fade 
reaching 80 %, respectively.

The MO-DIC method could be easily applied and integrated into the 
BMS of electric vehicles. As outlined in the flowchart of Fig. 7, initiating 
with standard operational procedures, the vehicle’s battery experienced 
normal discharge and charge cycles, and then two MO-DIC cycles could 
be designed to obtain critical data for subsequent analysis. After MO-DIC 
cycles, the calculation of the incremental capacity (IC) curve’s deriva
tive should be executed, and the NH value could be extracted from the 
MO-DIC peak height to evaluate the battery’s health and forecast its end- 
of-life trajectory. Additionally, the NHR value was calculated to quan
titatively measure the battery’s degradation status. This analysis 
concluded with a result signal that fed into the BMS, allowing the system 
to make proactive decisions regarding battery usage, maintenance, or 
replacement. This methodological approach, as delineated in the flow
chart, not only refined the BMS’s predictive acumen, but also under
scored the promising prospects of the MO-DIC method in enhancing the 
longevity and reliability of EV batteries. By providing early detection 
indicators of degradation, the MO-DIC method could become a corner
stone for the advancement of battery health management, ensuring 
sustained performance, and the overall efficiency of battery systems in 
EVs. Despite the fact that multi-stage charging protocols are commonly 
used in the practical application of batteries or battery packs, MO-DIC 
method can be employed at specific time points to accurately assess 
battery life degradation. For instance, during the regular maintenance of 
EVs, a single test using the MO-DIC method can provide predictive data 
on the current battery life degradation. Combined with historical data 
from the database, this enables us to precisely calculate the current 
health status of the battery. In future research, we will accumulate more 
data to further optimize and enhance the accurate prediction capability 
of the MO-DIC method.

In summary, the MO-DIC method enhanced the predictive sensitivity 
and accuracy of the BMS, thus, advancing the safe and reliable operation 
of EVs. This approach could become a cornerstone in the evolution of 
battery health management, ensuring the sustained performance and 
overall efficiency of EV systems.

5. Conclusions

This study has successfully demonstrated the critical influence of 
micro-overcharging on the nonlinear capacity degradation of lithium- 
ion batteries, particularly when the N/P ratio is suboptimal. By con
ducting a thorough analysis of batteries with N/P ratios of 1.1 and 0.9, 
we have identified distinct degradation patterns that significantly 

Table 2 
Knee points of the battery, in terms of the capacity and derivative of incremental 
capacity.

battery 
number

Cut-off 
voltage

Capacity knee 
point

MO-DIC knee 
point

Cycle 
difference

BT-4.3 V 4.3 V 293 257 36
BT-4.4 V 4.4 V 158 138 20
BV-4.4 V 4.4 V 439 389 50
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impact battery performance and longevity. The results indicate that 
prolonged micro-overcharging, often associated with lower N/P ratios, 
accelerates cathode material degradation, leading to a pronounced 
nonlinear decay in battery capacity. This degradation is characterized 
by distinct peaks in the incremental capacity (IC) curve, which serve as 
critical indicators of the battery’s health status. The capacity loss, pri
marily driven by cathode material degradation, underscores the 
importance of managing charging conditions to mitigate performance 
decline.

Based on these observations, we introduced the micro-overcharging 
differential incremental capacity (MO-DIC) method, a novel approach to 
predict the capacity decay knee point. This method leverages the rate of 
change of the normalized peak height in the differential overcharging IC 
curve to provide early warnings of imminent capacity degradation. The 
validation of MO-DIC using low N/P ratio batteries revealed its ability to 
detect the degradation knee point several cycles ahead of traditional 
indicators, enhancing proactive battery health management and 
potentially extending battery life. Routine cycling tests on BV-4.4V 
batteries, conducted until failure with MO-DIC tests performed every 
48 cycles, confirmed the method’s efficacy. MO-DIC demonstrated its 
capability to forecast the battery’s life inflection point 25 to 36 cycles 
ahead of capacity fade indicators and approximately 50 cycles before 
reaching end-of-life. This advanced prediction capability is a significant 
advancement in battery health status prediction, offering substantial 
benefits for battery life cycle analysis and the formulation of proactive 
maintenance strategies.

In conclusion, the MO-DIC method presents a robust tool for pre
dicting nonlinear capacity degradation in lithium-ion batteries, partic
ularly under conditions of micro-overcharging. Its ability to provide 
early warnings of battery degradation can significantly enhance battery 
management practices and extend operational lifespans. Future research 
will continue to refine the MO-DIC method and assess its applicability 
across various battery types and operating conditions, aiming to further 
improve its predictive accuracy and practical utility. This study’s find
ings contribute to the broader understanding of battery degradation 
mechanisms and pave the way for more effective battery management 
strategies in the electric vehicle and energy storage sectors.
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